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FIGURE CAPTIONS
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Figure 2.1 Cross section of original cylinder and flat cell model
used for numerical calculations.
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Figure 2.3 Plot of the norm of the spectral admittance function for

an example involving axial slots in a cylinder of 1.0 A
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Figure 2.4 Plot of the norm of the spectral admittance function for an
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Figure 2.5 Plot of the condition number of the sSystem matrix representing
the MFIE for the example with cylinder radius equal to 0.7582 .
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Figure 4.1 Plot of the three dominant eigenvalues of the TE MFIE as
a function of kga.

Figure 4.2 Comparison of the MFIE and exact solutions for the TE
current density induced on a circular cylinder of radius
0.3833 a.
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a function of ka.
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ABSTRACT

A numerical procedure to estimate the mutual admittance between finite
slots in infinite, conducting cylinders of arbitrary cross-sectional shape is
described. The problem formulation involves a Fourier transform and the numeri-
cal solution of integral equations. Additional issues addressed include the
large amount of required computation, remedies for non-uniqueness problems asso-
ciated with the integral equations, and the overall accuracy of the procedu-e.
Good agreement is obtained between the numerical results and exact eigenfunction

data for slots in circular cylinders. Several other cylindrical shapes are

investigated.




1. INTRODUCTION

Both the proper design of slot arrays and the positioning of multiple
antenna arrays on a common surface require an accurate estimate of the mutual
coupling between individual slot elements. To date, the analysis of mutual
admittance has been undertaken for slots on ground planes [l1], on cones [2],
[3], on circular cylinders [4]-(8], and on spherical surfaces [9]. Limited
attempts have also been made to treat more general surface shapes [10], [ll].
These approaches are based on analytical or asymptotic methods, and are not
easlly generalized to more complicated geometries. In an attempt to extend this
type of analysis to arbitrary geometries, the present investigation considers a

numerical solution for the mutual coupling between individual slots in an infi-

nite, conducting cylinder of arbitrary cross—-sectional shape. In general, numer-
ical solutions involving electrically large three-~dimensional structures are
cumbersome and inefficient. Furthermore, trade-offs that can greatly improve

the efficiency usually do so only at the expense of accuracy in the results.
Therefore, one goal of the present study 1s to identify the degree of accuracy
attainable in practice from the numerical procedure and assess the overall effi-
ciency of the approach. Since extensive results have been tabulated for cir-
cular cylinders [5], these will be the initial foci for judging the accuracy of

the method.

Two cases will be considered: coupling between two circumferential slots
and coupling between two axial slots. The slots are assumed to be waveguide-fed
apertures excited with the TE1l0 waveguide mode, with no higher—order modes

included in the model. (A recent investigation has included the effects of
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higher~order modes and concluded that the true mutual coupling is generally
slightly smaller than that predicted under the above assumption [9].) Under

this assumption, the aperture field of the source slot can be expressed as

W W H H
F a3 2__41/2 ot . __A A .- _A A
E z ( H w ) cos (w ) p(t’ 2 H 2 ) P(z: 2 ’ 2 ) (l.l)
A"A A
for the circumferential slot and
H H W W
z 2__\1/2 "2y e oA AV o0 A A
E e ( HAWA ) cos wA) p(t! 2 ) 2 ) P(Z’ 2 > 2 ) (1.2)

for the axial slot, where the origin of the coordinate system is located at the
center of the slot, as depicted in Figure l.1. The "pulse" functions appearing
in Equations (l.1) and (1.2) explicitly truncate the support of E to the aper-

ture.

Under the above assumption, the mutual admittance for the circumferential

case 1is defined

to + E_ Zo * EE
2 2
2 1/2 ﬂt‘ » » » »
YAB = - (Tw__) f f cos -w——) Jz (z7,t7) dzdt (1.3)
BB WB HB B
to "7 %o TT

where the integral is taken over the aperture of slot B, Jz is the current den-
sity induced on the cylinder when slot B is short-circuited (closed by a perfect
conductor) and slot A is excited by the assumed field of Equation (l.l). The
variables z and t specify the distance from the center of the source slot to

the center of the secondary slot. Similarly, for the axial case the mutual

admittance 1s defined




Figure 1.1 Geometry showing two axial slots and two
circumferential slots in a cylinder of
arbitrary shape.
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to *+ EE zo + EE
Yo=- (—2—)1/2 [ cos (2-) J, (t%, z°) dz"dt”  (1.4)
AB HgWy H W Wg 7t
to - _B 2z - _B
2 2

where Jt is the transverse current density induced on the cylinder by the
assumed field of Equation (1.2), with slot B short-circuited. The current den-
sities can be found after solving for the fields of an equivalent magnetic

source defined
K =E x i (1.5)

For the circumferential slot field of Equation (1l.1),

W W H H
= 2 +1/2 nt . __A A . __A A
Keq EKt ¢ (W) cos (z]‘;) P(t, ) ) p(Z, 2 2 )
(1.6)
For the axial slot field of Equation (1.2),
H H W W
= n R 2 1/2 nz . __A A . __A A
Keq ZKZ FA (—W) cos (WA) P(t, 732 ) P(Z, 77 )
(1.7)

These equivalent magnetic currents, radiating in the presence of the infinite
cylinder, produce the same exterlior fields and currents as the original slot
with aperture fields described by Equations (l.1) and (1.2). Thus, the problem
of computing the mutual coupling between slots A and B reduces to that of
finding the currents induced upon a closed, infinite conducting cylinder by a
finite impressed source Req' Once these currents are found, the mutual admit-

tance between slot A and any other slot location can be computed using Equations

(1.3) and (l.4).

*
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To simplify the task of determining the currents induced upon an infinite
cylinder by a finite source, the problem can be posed in the Fourier transform

domain. The Fourier transform is defined

F, {8(2)} = fi(y) = [ B e 372 g (1.8)

The inverse Fourier transform is

P (D) = B2 = [ Ry &I gy (1.9)

tyt

Applied to the unknown currents, the Fourier transform converts functions of 'z
to functions of the transform variable 'y.' Because the cylinder is invariant

with respect to z, the unknown current density at each value of y can be found

independently. Thus, the original three—dimensional problem reduces to the

superposition of uncoupled two-dimensional problems, which are more amenable to

numerical solution.

In spite of the simplification resulting from the decoupling of the
equations mentioned above, we are still faced with the task of solving the two-
dimensional problem over the infinite continuum spanned by the variable y. 1In
practice, we are forced to work with a finite number of discrete values of the
spatial frequency, i.e., Yor Yspo cees Yaye As is well known from signal analy-
sis [12], when a Fourier transform is combined with an evenly-spaced sampling

process, the result is equivalent to working with the Fourier transform of a

Chaa]

periodic extension of the original function of z. We can think of the above
approach as being equivalent to replacing the original problem (which involved a

single source slot) by one involving a periodic array of source slots. This

v » 0
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analogy allows a better grasp of the approximations introduced by sampling in

the transform domain.

The period of the fictitious source array must be sufficiently large so
that the coupling between the fictitious slots and slot B will be insignificant
compared to the coupling from slot A to slot B. In addition, discrete values of
vy must be included up to the point where truncation does not introduce numerical
inaccuracy. After solving for the transform currents over a sufficient range of

Y, the inverse traansform can be computed explicitly according to

e e 2 2 o5 A N ER

) J(t,z) = [J(t 0) + 2 z J(t,n AY) cos(n Ay 2)] (1.10)
\" .l
Wi ’
3=
ﬁ to produce the spatial currents at the desired locations for the admittance

calculation. 1In Equation (1.10), we have assumed that the original source

distribution is centered at z=0 and is symmetric in z.

*
=
xR

Although the current density can be computed directly according to Equation

ﬂ (1.10), the admittance calculations of Equations (1.3) and (l1.4) are actually

convolutions in the variable z. Therefore, the z-integrations required for the

x
o
LY '-‘

-
4.

admittance calculation can be performed by an additional multiplication in the

54

Fourier transform domain, prior to inverse transformation. One advantage of

E §§ this alternative procedure is that one numerical integration 1is eliminated from
1

;, the computation of YAB' A secoad advantage is that the additional multiplica-
§ E} tive factor in the transform domain helps to dampen the higher spatial frequen-
$ cies and speed the convergence of the inverse Fourier transformation.

5

6 In summary, we have posed the mutual coupling problem in an arbitrarily-

ﬁ' i; shaped cylinder in such a manner as to make it amenable to numerical solution.
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The equivalence theorem is used to replace the source slot by magnetic currents
radiating in the presence of the closed cylinder. The desired three-dimensional
problem can be represented by the superposition of two-dimensional problems via
the Fourier transform. The equations can be discretized directly in the trans-
form domain, which introduces a fictitious periodicity in the spatial domain.
However, the formulation does require that the two-dimensional problem be solved
at a number (perhaps a large number depending on the relative location of the
source and secondary slot) of spatial frequencies. The extent of the necessary
spectrum, the period size, and other aspects concerning the modeling procedure

will be determined by numerical experimentation.

In order to implement the above procedure, it is necessary to solve the
associated two-dimensional scattering problems at each of the spatial frequen-
cies required. 1Initially, we consider a numerical solution of the magnetic-
field integral equation (MFIE). Chanter 2 describes the MFIE formulation for
axial slot coupling, and a similar formulation for circumferential slot coupling
is presented in Chapter 3. Unfortunately, the MFIE fails at certain spatial
frequencies throughout the range of interest, as preliminary results indicate.
Chapter 4 presents a detailed discussion of this problem and considers several
remedies. One such remedy involves the combined-field integral equation (CFIE).
Results from using a CFIE formulation for both axial and circumferential slots
are presented in Chapter 5. Use of the CFIE appears to eradicate the problems
associated with the MFIE, but at the expense of additional computational
overhead. Good agreement is obtained between the CFIE results and exact eigen-
function values for slots in circular cylinders. Chapter 6 presents additional

admittance data for slots in noncircular cylinders.
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2. COUPLING BETWEEN AXIAL SLOTS

2.1 Formulation

The framework for constructing a numerical solution for the mutual admit-
tance between slots was developed in Chapter l. The remaining task is to find
the electric current density induced in the vicinity of the secondary slot by
the equivalent magnetic current representing the source slot. For axial slots,
only the transverse electric current density J: is required for the admittance
calculation. A suitable equation for the transverse electric current density is
the magnetic field integral equation (MFIE), which enforces the boundary con-
dition that the total magnetic field at the surface of the cylinder is propor-

tional to the electric surface curreat density according to

AxH=J (2.1)
The MFIE can be expressed

o JkR

4qR

-

Hinc

» (t,z) = - Je (t,2) =~ Z » curl [ €(t”) Jt(t',z') dt “dz

(2.2)

where

R =/ [x(t) - x(e) ] + [y(e) - y(t)]% + (z - 27)° (2.3)

and where Hinc represents the Z-component of the magnetic field produced by the
equivalent magnetic curreant Kz if the magnetic current was radiating in free
space. Equation (2.2) is a convolution in the variable z, -and an application of

the Fourier transform in conjunction with the convolution theorem [12] yields

~1 ~ Py A~ » o4 - ~ »
Hznc (t,y) = - Jc (t,¥) = 2 « curl [ £(t7) Jt(t ,Y) G (p3k,y) dt

(2.4)

&
gt

2 TR IO Cobaad o MO o XY
SN O RO A

)




10

where [13]
i A
Glpik,y) = F { S—rer

by ;:;2+z2

=2 1P v'(z-vz) k2> 2

43 0
-1 (2.5)
i%_ K, (o Yz-kz) 12 > k2
l
and
o=/ [x(0) - x(eM)]% + [9(e) - y(eM)]? (2.6)

Equation (2.4) is identical in form to the conventional two-dimensional integral
equation for scattering from a conducting cylinder, with the exception that the

wavenumber k has been replaced by

k“=-y k™ > vy
k - (2.7)
.y S22 2> il

The incident magnetic field can be computed from the expression

2 2
A0S (cp) =X [ R (ety) & (oik,y) dt” (2.8)
z jkn z
slotA

where n is the intrinsic impedance of free space, p is defined in Equation

(2.6), and Ez is the Fourier transform of Equation (l1.7).
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The preceding discussion introduced the idea of replacing the original
source slot by a periodic repetition of slots, in order to discretize the trans-—
form domain. If the spatial period is Pz, the sampling interval in the trans-

form domain 1is fixed at

ay = &2 (2.9)

z
Equation (2.4) can be solved approximately by converting it to a matrix
equation of finite order, using the method of moments [14],(15]. This procedure

is illustrated in the following section.

2.2 Numerical Solution of the Two-Dimensional
Magnetic Field Integral Equation

Equation (2.4) can be solved approximately by converting it to a matrix
equation of finite order, using a method of moments [14],[15]. The cylindrical
cross—-section can be modeled by the superposition of flat strip-cells, as
illustrated in Figure 2.l. For convenience, we assume that slot A can be
modeled by a small number of the same cells. Each cell in the model can be
described by its phase center (x,y), its cross-sectional length 'w,' and an

orientation angle 'Q' defining the outward normal vector according to
fi =X cos Q+ § sin Q (2.10)

If pulse basis functions are used to represent the surface current density Jt’
and Equation (2.4) is enforced at the center of each of the cells in the model,

the result is a matrix equation of the form




12

A A
t n
r4
Figure 2.1 Cross section of original cylinder and flat cell model

used for numerical calculations.
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(2.11)

General expressions for source-field relationships are derived in Appendix A,

and can be used to construct the matrix elements

1
z M e -
ii 2
W (2.12)
n
2
Ax
z / . [cos a_ X
s= - n
2
+s1ngn§1] 8 (Rik,y) ds 1i# n (2.13)
where
AXx = x, + s 3in Q (2.14)
i n
8y = y, = s cos @ (2.15)
R =/ sz + Ayz
and ]
-y @) 2_2 2, 2
, -_'W_L H) (R 7/ k°=y" ) kK° >y
i A
~ 1
G” (R;k,y) = ¢
22 7 2 2 .2
; -———};—-xl(a Y k) Yo k
4

(2.17)




14

Since closed-form expressions for the integrals of the type appearing in

Equation (2.13) are not often available, some form of numerical integration is

necessary to accurately evaluate the elements of the moment-method matrix. 1In

this case, many of the matrix elements can be accurately determined by single- ¢

f point integration. For those elements of the matrix representing closely spaced
cells, experimentation determined that single-point evaluation does not produce
accurate enough numbers. A Romberg integration algorithm [16] was used to com~
pute the closely-spaced terms. Since the slot excitation is assumed to be

constant in the variable t, the right-hand side is given by

hy =V I by (2.18)

where, from Appendix A we have

P
PPt

R NGRS ¥ >k (2.20)

-

k| W
o _ l t i 2
" -3 3™ G 10682 Y .
! - 2=y )
¥ h E ] W )
3 11 4kn { I
: k| W '
N 2 el "4 2 2
. -1 5 (Goes?) Yook (2.19)
K ‘
M 9
" and, for 1 # n, (
: | HO(Z) ® /K3y k2> vl
2 2 '
h oa o SREYT)
in 4kn n
|
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¥ is the Fourier transform of Equation (1.7) and is given by
p
- szA W, cos ( ZA) [ﬂ ‘IWAY +— +1WAY ], LR
Voo = (2.21)
W
- HiwA Eé , WAY =t 7

Note that Equation (2.21) is an even—symmetric function of y.

In order to simplity the admittance calculation as much as possible, the z-
integration in Equation (l.4) can be performed analytically in the Fourier
transform domain. This requires that we weigh the spectrum by an additional
factor ﬁ(y). For axial slots, ﬁ(Y) represents the transform of the cosine func-

tion from Equation (l1.4), and is given as

g 1 1
Wy cos ( 2 ) | —W_y + LY ], WpY # t x
W(y) =5 (2.22)
W
2_B » Mgy =t x

Both W and ¥ are even-symmetric functions of y, and therefore it is only

necessary to work with the positive part of the spectrum. Thus, y will range
from O to NAy, {n intervals of Ay. The product of the two-dimensional current
density as a function of spatial frequency, the excitation V(y), and the addi-

tional weighting factor W(y) will be named the "spectral admittance function"

?(t,y). The inverse Fourier transform of ?, according to
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A N5
¥(e) =L [¥(e,v) + 2 [ ¥(c,nay) cos (navz)] (2.23)
n=1

produces a spatial admittance function Y(t). The admittance between two slots

is then found from

t + "B
° 2
2 q1/2 aw -
Y, = - [55] / Y(t") de (2.26)
AB HoWy o - Wy
2

Equation (2.11) must be solved over the range spanned by the transform
variable y. In theory, this range extends from - « to + », although in practice
it is truncated at some finite value. The portion of the spectrum where Y2 < kz
is known as the "visible region." Throughout the visible region, Equation (2.11)
is complex-valued. However, for YZ > kz (the "invisible" region of the spectrum),
the matrix elements of Equation (2.11) are real-valued. Thus, for 72 > kz, a

significant computational savings can be obtained by treating Equation (2.l1) as

a real-valued system.

2.3 Preliminary Numerical Results

There are three types of "convergence" to be evaluated by numerical experi-
mentation. The first concerns the inverse Fourier transform: How much of the
spectrum is necessary when computing Equation (2.23)? 1In generzl, this will be
a function of the axial dimension of the slots, since the weighting factors V(y)
and W(y) appearing in Equations (2.21) and (2.22) are both functions of slot
dimension. Thus, it may be necessary to include more of the spectrum when com=~
puting coupling between shorter slots. The second type of convergence concerns
the fictitious periodicity introduced through sampling in the Fourier transform

domain: How large does the period have to be to accurately represent a single

- BLOLSL IOV -, OV AN AP O L
O R R U RN A OSSO R kel ef;a“ﬂi,!ht:.‘A 2
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source slot? The period will be a function of slot spacing, {i.e., a larger
period will be necessary when treating larger slot spacings. The third type of
convergence involves the numerical solution of the integral equation: How many

expansion functions are needed to ensure accurate results?

In an attempt to answer these questions, we consider an example involving
axial slots in circular cylinders. Admittance data based upon eigenvalue solu-
tions (available only when the cylinder is circular in shape) have been tabu-
lated [5]. By comparing these data to numerical results, the necessary spectrum
and period size can be ascertained. The numerical solution to integral equations
has been studied for many years, and a considerable amount of experience
suggests that approximately 10 expansion functions per wavelength are required
for meaningful results. We will consider the effect of different cell densities

in this range.

The initial example involves a circular cylinder with radius equal to one
wavelength, containing axial slots of dimensions 0.2 x 0.5 wavelength. The
cylinder geometry is shown in Figure 2.2. Table 2.1 shows values of the admit-
tance between slots of different spacings, taken from Reference [5]. These are
based upon an eigenfunction analysis, and are the values that should be produced

by the numerical approach under ideal circumstances (exact solutions to the

integral equation, infinite period, and no truncation of the spectrum). Thus,

we will use Table 2,1 as a reference for comparison.

A computer code was developed in FORTRAN to compute the mutual admittance
between axial slots, using the procedure discussed above. This program requires

that the cylinder geometry be specified in terms of discrete cells, as illustrated



Figure 2.2 Geometry of circular cylinder containing two axial slots.
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TABLE 2.1

Eigenfunction solution for the mutual admittance between
slots in a cylinder with radius equal to one wavelength.

The slots are axial with dimensions W = 0.5 wavelength,

wh 55 T = W 5N N

H = 0.2 wavelength. The admittance is given in magnitude
(decibels) and phase angle (degrees). Taken from Reference

[5]:

,,
[~

Y
Q: o)
. ‘ Az Ad YAB in 4B
:"l
“‘
‘;‘. g
::t 1 0 - 87.1 / - 171°
E 22 0 - 100.0 / - 174°
A X P 0 - 2.4 /- 175°
::' 8 0 - 124.3 / - 174°
. g 1A 45° - 89.2 / 2°
i

-
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in Figure 2.1. For the cylinder of one wavelength radius, consider the use of

88 equal-sized cells to represent the model. This satisfies the 10 cells per

‘!
wavelength requirement. Although not absolutely necessary, for convenience we .
represent the source and secondary slot in terms of the same model as the :
cylinder. In this case, the choice of 88 equal-sized cells constrains the
height of the slots to 0.214 wavelength (three cells) instead of 0.200 wave- ;

length. This could be alleviated by the use of non-equal cell sizes, but the
difference here is considered slight. (In order to easily treat situations
where the source and secondary slot are separated in both the axial and circum- Y
ferential directions, it may be necessary to use non—-equal cell sizes throughout
the model.) 1In this case, the choice of 88 equal-sized cells allows us to treat g

a circumferential separation of 0 and 45 degrees.

Results for the mutual admittance based on the 88 cell model are tabulated
in Tables 2.2 through 2.5. Table 2.6 shows a comparison of results from a 63
cell model (equal-sized cells) with those from the 88 cell model and the eigen-— 7
function data. The results from the 88 cell model appear to be more accurate |
than those of the 63 cell model. In general, there is excellent agreement b,
between the numerical and eigenfunction results. For slots that are closely
spaced in z, the accuracy does not appear to improve much as the period size is
increased. For slots that are separated by several wavelengths along the v
cylinder axis, the results appear to improve as the fictitious period size is

increased. ft

To determine the necessary spectrum for inverse Fourier transformation, -

Figure 2.3 shows the spectral admittance function as a function of the transform

BTN

variable y. This figure suggests that the spectrum contains little information

e, BN BN N A AO) Y, WA HRAT: NP R W b AT s
RIS O bR SO RO N A SODN A DN MK IR R CAARER!

ALY
*.w.g
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A

s TABLE 2.2
¥
[ NS

Numerical results for the mutual admittance between axial

=28

N slots as a function of period size and spectrum truncation.

-

-

[l
n

?:{.

The circular cylinder has 1A radius and is modeled with 88

cells. Slot separation: Az = 1), A¢p = 0° (MFIE solution)

gt

The admittance is given in magnitude (decibels) and angle
(degrees). Both slots are axial with dimensions H = 0.214

and W = 0.5 wavelength.

o
EA- T -

D

. i

; Pz Ymax = 20 Ymax = 30

) ,

W 20,51 | - 86.59 /-169.0 - 86.63 /=170.3
" ~169.0 ~170.3
" E

¢ -

. 53 40.5\ | - 86.93 /-168.6 - 86.97 /-170.0
+* —_ ZiiV.Y
K

igd g

A

B 80.5% | - 86.90 /-168.7 - 86.94 /=170.0
¥ oY)

M

g 00
N .w't_'l" SHOAGA
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TABLE 2.3 ﬂ
Numerical results for the mutual admittance between axial '
slots as a function of period size and spectrum truncation. i
The circular cylinder has 1A radius and is modeled with 88
cells. Slot separation: Az = 2), A¢ = 0° (MFIE solution) B
: The admittance is given in magnitude (decibels) and angle
(degrees). Both slots have H = 0,214 and W = 0.5 wave- ﬂ
length, @
;
‘ 2 Ymax 20 Tmax ~ 30 s
v LY
‘ K
20,5\ | - 100.86 /-172.6 - 100.85 /-171.7 a
.
X
[} ()
t :.:
! 40,5 - 99.59 /-172.7 - 99.58 /-172.5
t
80,5\ - 99.24 /-172.9 - 99.23 /=172.5

LY

B 3X 23 &2

-
T

REW]

O O 30 MO IO ) 0 ) : OV R G R ETRLYS T N AT - RN, " IRy
R AR ST A0 O i KU XA R, BN 4 7 r RN R i Al ! ; - o7



23

TABLE 2.4

Numerical results for the mutual admittance between axial
slots as a function of period size and spectrum truncation.
The circular cylinder has 1) radius and is modeled with 88

cells. Slot separation: Az = 4), A¢ = 0° (MFIE solution)

SN OES = = B & =

The admittance is given in magnitude (decibels) and angle

(degrees). Both slots have H = 0.214 and W = 0.5,

Pz Tnax = 20 Tmax 30
O
[
20.5) - 111.33 /-179.9 - 111.31 /-175.7
gg 40.5) - 109.74 /-177.9 - 109.70 /-174.2
80.5x - 110.96 /-178.8 - 110.92 /-174.3

=2

| _=¢
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TABLE 2.5

Numerical results for the mutual admittance between axial
slots as a function of period size and spectrum truncation.
The circular cylinder has 1) radius and is modeled with 88
cells. Slot separation: Az = 1A, A¢ = 45° (MFIE solution).
The admittance is given in magnitude (decibels) and angle

(degrees). Both slots have H = 0.214)X and W = 0.5,

Pz Tmax ~ 20 Tmax ~ 30
i
U
20.5A - 88.97 / 1.7 - 88.97 / 1.7 !

80.5x - 88.83 /1.8 - 88.83 / 1.8

; ; O 0 UNORO
2‘1.~‘A‘3’_?.71“‘7!,l, v'iﬁil N '3'.“"*‘:'*' 'b‘»'r'ﬁ‘g'l' QAN
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TABLE 2.6

A comparison of the numerical results for the mutual admittance

between axial slots for different models of the cylinder.

The circular cylinder has 1) radius.

and the spectrum {s truncated at y = 20.

tions involve A¢ = 0° (MFIE solution).

The period is 40.5)
All slot separa-

The admittance is

given in magnitude (decibels) and angle (degrees). Both

slots

have H = 0,214X and W = 0,5).

25

Az 63 cell model 88 cell model eigenfunction
In } - 87.67 /-167.1} - 86.93 /-168.7 - 87.1 /=171
2 - 100.27 /-171.9} - 99.59 /-172.7 - 100.0 /-174
4 - 109.61 /-178.0} - 109.74 /-177.9 - 112.4 /-175
8 - 120.88 /-2.8 | - 125.34 /6.3 - 1264.3  /-174
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Figure 2.3 Plot of the norm of the spectral admittance function for
an example Iinvolving axial slots in a cylinder of 1.0 A
radius and slots of dimension W = 0.5 A. The norm is taken
with respect to the circumferential variable.
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beyond y = 20. 1In Tables 2.2 through 2.5, admittance results are presented for
the case when the spectrum is truncated at y = 20 and y = 30. For this example,
it is apparent that the additional spectrum causes virtually no change in the

calculated admittance values.

To summarize the findings of this initial example, it appears that a
cylinder model containing a cell density of about 10 cells per wavelength yields
accurate enough solutions to the MFIE for our purpose., Furthermore, for this
example the spectrum could be truncated at y = 20 without significant error. It
also appears that for slots spaced within several wavelengths in z, the period
size need not be more than 40 wavelengths for reliable solutions. However, for
slot spacings greater than 4 wavelengths in z, we observe poor phase accuracy
(see Table 2.6). This may be a result of insufficient period size for that
separation. We also observe that the convergence in y (i.e., the convergence of
the admittance for different truncations of the spectrum) is much faster when

there 1s a nonzero A¢ separation.

Consider an example involving a circular cylinder with radius 0.7582 wave-
length. Slot dimensions are 0.3048 x 0.6858 wavelength. A cylinder model con-
sisting of 47 equal-sized cells satisfies the "10 cells per wavelength" condition
discussed above. 1In addition, {f the slots are modeled by three adjacent cells,
the 47 cell model yields a slot dimension in the model of 0.3041 x 0,6858, which

i1s reasonably close to the desired size.

Data for the mutual admittance between axial slots for different slot
separations are presented in Tables 2.7 to 2.9. Eigenfunction results are only

available for one of these cases, that displayed in Table 2.9. The accuracy of
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TABLE 2.7

Numerical results for the mutual admittance between axial
slots as a function of period size and spectrum truncation.
The circular cylinder has radius equal to 0.7582 wavelength
and 1s modeled with 47 cells. The slots have H = 0.30411)
and W = 0,6858\. Slot separation: A¢ = 0, Az = 1.524A. The
admittance is given in magnitude (decibels) and angle

¢ (degrees). (MFIE solution)

o z max max

20.5) - 93.02 / 14.5 - 93.17 / 9.9

IA’
nI 40.5% | - 95.75 / 14.6 -~ 95.96 / 7.6 L

80.52x - 90.85 /_11.3 -~ 90.95 / 7.6

- LN
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TABLE 2.8

Numerical results for the mutual admittance between axial
slots as a function of period size and spectrum truncation.
The circular cylinder has radius equal to 0.7582 wavelength
and i{s modeled with 47 cells. The slots have H = 0.30411)
and W = 0.6858)\. Slot separation: A¢ = 0, Az = 3,048). The
admittance is given in magnitude (decibels) and angle

(degrees). (MFIE solution)

Pz Ymax = 20 Ymax = 30
20.5x - 107.02 /163.2 - 107.35 /173.7
40.5) - 102.33 /176.8 - 102.34 /-178.3
80.5) - 114.25 /142.8 - 115.88 /163.8
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TABLE 2.9

Numerical results for the mutual admittance between axial
slots as a function of period size and spectrum truncation.
The circular cylinder has radius equal to 0.7582 wavelength
and is modeled with 47 cells. The slots have H = 0.30411)
and W = 0,6858\. Slot separation: A¢ = 0, Az = 6.096). The
admittance is given in magnitude (decibels) and angle
(degrees). (MFIE solution) The eigenfunction value of

admittance for this slot separation is -118.1 /150°.

Pz Ynax * 20 Ymax 30
20,5 - 109.92 / 15.5 - 109.84 /_17.3
40,52 - 102.02 / 14,7 - 101.91 /7.1

80.5x - 111.74 /165.6 - 111.57 /161.7
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the numerical results displayed in Table 2.9 is not good. In addition, for all
of these slot separations the admittance values do not seem to stabilize as the
period size is increased, although trucating the spectrum at y = 20 seems to be
adequate. The spectral admittance function is shown in Figure 2.4, and also

suggests that truncation at y = 20 is sufficient.

In an attempt to explain the instability of the admittance values with
increasing period Pz, the condition number of the matrix eqﬁation solved at each
of the spatial frequencies is displayed in Figure 2.5. Near two spatial fre-
quencies in the range of interest, the matrix equation becomes very ill-
conditioned. This behavior is characteristic of a problem with the integral
equation formulation for this example. It is known that unique solutions exist
to the MFIE except at spatial frequencies where cavity resonances can occur
(17], (18], and at those frequencies the moment-method matrix will fail to
represent the desired scattering problem. For a circular cylinder geometry,
these frequencies are related to the resonance frequencies of circular cavities.
In fact, for this particular example, the theoretical resonance frequencies
occur when y = 3.73 and y = 5.42, Thus, ill-conditioning is observed in the
matrix at exactly the spatial frequencies where cavity resonances are theoreti-

cally predicted to occur.

It is interesting that the first example appeared to produce accurate,
stable results, in spite of the fact that it theoretically suffers from similar
"internal resonance" problems. It seems that the uniqueness problem will not
arise unless the sample points in y coincide almost exactly with the "resonant"
spatial frequencies. Apparently, only some examples will be affected by this

problem.
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» Figure 2.4 Plot of the norm of the spectral admittance function for an

axial slot example involving a 0.7582 ) radius cylinder with

slots of dimension W = 0.6858 A. The norm is taken with
regpect to the circumferential variable. a
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Since the type of numerical formulation employed to solve the coupling

problem requires the solution of the integral equations over a fairly wide range

Wi

5

&, of spatial frequencies, it is likely that resonant frequencies will be encoun-

Ky

tered in most of the cylinder geometries of interest. Thus, it is essential

@ |
"

) that the uniqueness problem be remediated if the numerical procedure is to be b

practical. Chapter 4 will address this issue in detail, and discuss several

possible remedies to the uniqueness problem. In Chapter 5, one of these reme-

Qg dies is implemented and tested for the previous examples.

o

.

L}

5

. 2.4 Summary

2

o)

gy A numerical formulation is presented for the calculation of mutual admit-

tance between axial slots in arbitrarily-shaped cylinders. Most of this chapter

*i{ dealt with the numerical solution of the magnetic-field integral equation

)

g’ (MFIE). Examples were used to illustrate the stability and accuracy of the pro-
:ﬁ: cedure, as well as to evaluate the convergence of the results as different para-
iﬁ meters (number of cells in the model, spatial period, and truncation of the

%3 spectrum) were varied. Agreement between eigenfunction and numerical results

tg for the first example indicates that the procedure 1s basically accurate and

jﬁ practical to apply. However, the second example showed that there is a unique-

ygg ness problem assoclated with the MFIE that sometimes affects the results. This

problem will be the focus of Chapter 4, where remedies will be evaluated.
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' 3. COUPLING BETWEEN CIRCUMFERENTIAL SLOTS

3.1 Formulation

Ay

.

The treatment of coupling between circumferential slots is similar to that

P |

of the axial case. A two—-dimensional scattering problem must be solved at each

spatial frequency needed in the Fourier transform domain. However, the circum-

)

ferential case is slightly more complicated because the process requires the

=
s solution of both £ and Z components of electric current on the cylinder.
2 Although only the Z component is used in the admittance calculation, both com-
e
& ponents of electric current density appear in the coupled magnetic field
o integral equations
~inc ~ ' - - » ~ » ~ -
i oW (e,y) = - J (6,) = Z « curl [ €D J (t7,7) G(psk,y) dt” (3.1)
e A" (e,y) =3 (t,y) - €(t) » curl [ 2 5 (£7,y) G(pik,y) dt”
{< t z z
'-! - £(t) o curl [ €(t7) ft(t‘,y) Closk,y) dt” (3.2)
o
RS The "incident” fields on the left-hand side of the equation are given by
» ~ ~ . o~ .
B0 ey = X 1 (2SR (ef,v) 8ok, y) dt (3.3)
K z kn at t
slot A
'E; ~inc kz ~ ~
and HO o (6,7) = — [ K (7, 7) Glpsk,y) dt”
4‘" J Slot A
Ry
a $ 23 LR (et} Sesk, ) de” (3.4)
jkn ot t
slot A
<
\'.,
k
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where G is defined in Equation (2.5), and ﬁt is the Fourier transform of

Equation (1.6) (taken with respect to the the variable z).

The equation for the transverse component of the current is decoupled from
the other, and this suggests that we first solve Equation (3.1) for J,- Subse-
quently, the axial component can be found from Equation (3.2). Because the
treatment of the circumferential case requires the solution of two integral
equations, which translates into the solution of two matrix equations for each
value of y, the process is less efficient than the procedure described in

Chapter 2 for axial slots.

3.2 Numerical Solution of the Coupled Integral Equations

As explained in Chapter 2, the cylinder under consideration can be modeled
by a superposition of N flat cells, as illustrated in Figure 2.1. Again we con-
sider replacing the unknown current density by an expansion in piecewise constant
basis functions and enforcing the equations at the center of each cell in the

model.

In addition, suppose that the source slot Is represented by the same cells

that comprise the model, and the aperture field (the equivalent magnetic source

O ~

}{1 Kt) is considered to be plecewise constant in the variable t. Then the equation
1

Be

; & to be solved for the transverse component of the electric current density reduces

Wy

. to the matrix form of Equation (2.11) with the exception that

¢.’."'

.;" '1': Na

3 f ~ ~ ~

el hy = 1 V. L [G(p,;k,v) - G(p,ik,y)] (3.5)

ey n  kn 1 2

Mot n=1

MY

R where

A W W

s p, = /(x, === sin Q )2 + (y, + =2 cos Q) (3.6)

":'.' 1 ) n 1 2 n
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¢/, i 2 Yo 2
Py = (xi + 5 sin nn) + (y1 - 5 cos Qn) (3.7)

and Vn denotes the coefficients of a pulse expansion of the equivalent magnetic

current density representing slot 'A.,' Since the Fourier transform of Equation

(1.6) is
o~ 2 nt YHA
K (t,y) = / cos () 4 sin (—=) (3.8)
t HAWA wA 2 2
it follows that
H nt
2 oA n
Vn (v) = /FA-FA-% sin (T) cos (-‘7;—) (3.9)

where t, is the location of cell n in the source coordinates. Equation (3.5) is

derived in Appendix A.

Thus, an NxN matrix equati